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Abstract

Ammonoid identification is crucial to biostratigraphy, systematic palaeontology, and evolutionary bi-
ology, but may prove difficult when shell features and sutures are poorly preserved. This necessitates
novel approaches to ammonoid taxonomy. This study aimed to taxonomize ammonoids by their conch
geometry using supervised and unsupervised machine learning algorithms. Ammonoid measurement
data (conch diameter, whorl height, whorl width, and umbilical width) were taken from the Paleobiology
Database (PBDB). 11 species with≥ 50 specimens each were identified providingN = 781 total unique
specimens. Naive Bayes, Decision Tree, Random Forest, Gradient Boosting, K-Nearest Neighbours, and
Support Vector Machine classifiers were applied to the PBDB data with a 5 × 5 nested cross-validation
approach to obtain unbiased generalization performance estimates across a grid search of algorithm pa-
rameters. All supervised classifiers achieved ≥ 70% accuracy in identifying ammonoid species, with
Naive Bayes demonstrating the least over-fitting. The unsupervised clustering algorithms K-Means, DB-
SCAN, OPTICS, Mean Shift, and Affinity Propagation achieved Normalized Mutual Information scores of
≥ 0.6, with the centroid-basedmethods havingmost success. This presents a reasonably-accurate proof-
of-concept approach to ammonoid classification which may assist identification in cases where more
traditional methods are not feasible.

1 Introduction
Ammonoids represent a morphologically diverse subclass of extinct cephalopods, ranging from the Pale-
ozoic to the Mesozoic era (Walker and Ward, 2002). Found in marine sedimentary rocks, ammonoids are
crucial index fossils for biostratigraphy (Cox, 1995), therefore ammonoid taxonomy is useful for the study
of stratigraphic subdivision. Furthermore, the use of ammonoids in systematic palaeontology (Kennedy,
1984) and evolutionary biology (Monnet et al., 2015) is substantive.

Ammonoid taxonomy utilizes conchmorphology, coiling, and aperture shape. Where the shell is preserved,
ornaments such as ribs (their direction, spacing, and type) may be used for family classification (De Baets
et al., 2013a,b), as well as keels, spines, nodes, and tubercles. Where the shell is eroded or broken, su-
ture lines across the sediment-filled interior are highly diagnostic for ammonoid order (Wiedmann and
Kullmann, 1980; Klug and Hoffmann, 2015).

Korn (2010) defines a number of conch geometry parameters and proportions for taxonomic study of am-
monoids, shown in Table 1. Individual conchs may be described by terms based on the values of these
conch proportions, for example ammonoids with 0.35 ≤ CWI ≤ 0.6 have ‘discoidal’ general conch
shape.

Since ammonoids exhibit intraspecific variation (De Baets et al., 2015), it follows that each species has a
typical range of conch proportions which are diagnostic of taxonomy.

The aimof this study is to taxonomize ammonoids by their conchproportionswith a rangeof supervised and
unsupervised machine learning algorithms. This presents a novel proof-of-concept approach at ammonoid
diagnostics which lays the groundwork for future methods in biostratigraphy, systematic palaeontology,
and evolutionary biology.

1

https://orcid.org/0000-0002-4893-9178
mailto:ffoxon@pinneyassociates.com
kennethdebaets
Highlight
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Table 1: Ammonoid Conch Parameters and Proportions.

Property Abbreviation Equation

Largest conch diameter in ammonoid cross-section dm1 -
Largest whorl width in ammonoid cross-section ww1 -
Largest whorl height in ammonoid cross-section wh1 -
Umbilical width uw -
Conch width index CWI ww1

dm1

Whorl width index WWI ww1

wh1

Umbilical width index UWI uw
dm1

2 Methods

2.1 Data
Ammonoid data were sourced from the Paleobiology Database (PBDB) (Clapham et al., 2020), a non-
governmental, non-profit public paleontological database supported by the US National Science Founda-
tion. Data were downloaded from PBDB on 10 November, 2020, using the taxon/taxa name ‘Ammonoidea’,
which provided N = 19, 576 unique specimens. Specimens with missing diameter, whorl height, whorl
width, and umbilical width were excluded from analyses. To reduce over- or underfitting models, species
with fewer than 50 specimens in the dataset were also removed. The remaining data consisted ofN = 781
specimens from 11 species. These specimens are described in Longridge et al. (2006); Manger and Saun-
ders (1980); Gamsjäger (1982); Hillebrandt (2006); Aguirre-Urreta (1998); De Marez-Oyens (1933); Shigeta
and Nguyen (2014); Jenks et al. (2010); Kummel and Steele (1962); Kuenzi (1965); Shevyrev (1995); Tozer
(1961); Brühwiler and Bucher (2012); Brayard and Bucher (2008); Brayard et al. (2013); Popov (1962); Dagis
and Ermakova (1990); Shevyrev (1990).

2.2 Analyses
For each ammonoid, the conch parameters dm1, ww1, wh1, and uw were used to find the conch propor-
tions CWI ,WWI , and UWI as defined in Table 1. All specimens were then plotted to observe apparent
within-population variability in three-dimensional proportion space.

2.2.1 Supervised Algorithms

Classification was achievedwith supervisedmachine learning algorithms. The target variable was the spec-
imen species, and the fit data were the conch proportions.

A 5 × 5 nested cross-validation approach was taken to avoid potential bias in performance evaluation
due to over-fitting in model selection (Cawley and Talbot, 2010). This way, estimates for the unbiased
generalization performance of each classifier were obtained through test and train accuracies averaged
across the outer folds. For the inner folds, a grid search was utilized to select the model parameters which
resulted in the best test accuracy. The classifiers implemented, as well as the range of parameters used in
cross-validation, are summarized in Table 2.
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Table 2: Classification Models for Cross-Validation.

Classifier Parameters

Naive Bayes Variance smoothing: 10−4, 10−3, 10−2, 10−1, 100, 101, 102, 103, 104

Decision Tree
Depth: 1, 2, 3, . . . , 49, 50
Impurity criterion: gini, entropy
Splitter: best, random

Random Forest
Depth: 1, 2, 3, . . . , 49, 50
Impurity criterion: gini, entropy
Number of estimators: 100, 200

Gradient Boosting

Depth: 1, 2, 3, . . . , 49, 50
Number of estimators: 100, 200
Learning rate: 0.1, 0.5, 1.0
Loss function: deviance
Split quality criterion: Friedman MSE

K-Nearest Neighbours
K: 1, 2, 3, . . . , 49, 50
Algorithm: ball tree, KD tree, brute-force search

Support Vector Machine
Regularization parameter: 10−4, 10−3, 10−2, 10−1, 100, 101, 102, 103, 104

Kernel: linear, polynomial (order: 2, 3), radial basis function, sigmoid

2.2.2 Unsupervised Algorithms

In addition to the supervised classification algorithms, a range of unsupervised clustering algorithms were
implemented. Because cross-validation is not a clearly defined concept for unsupervised algorithms, cross-
validation was not implemented for these methods. The following describes the unsupervised algorithms
used and how model selection was approached.

A K-Means clustering model was selected in the usual way with the ‘elbow’ method by selecting the value
of k for which a reduction in the sum of squared distances of samples to their nearest cluster center is
diminished (the ‘elbow’ of an inertia against k curve).

Similarly, a DBSCAN clustering model was selected with an ‘elbow’ method. First, a value for the minimum
number of neighbours around a point to define a core point was chosen heuristically asm = bln(N)e. A
nearest neighbours algorithmwas then implemented to calculate the average distance between each point
and its bln(N)e nearest neighbours. The optimal value of epsilon was then selected as the distance which
corresponded to the elbow on a distance against data point number curve (with the data points sorted by
distance).

Building on the DBSCAN model, an OPTICS clustering model was implemented using a DBSCAN cluster
method and the same values of epsilon and m.

The final two unsupervised models implemented were Mean Shift and Affinity Propagation clustering. ‘El-
bow’ methods are not well defined for model selection with these two algorithms, therefore grid searches
were used to select the models with the highest Caliński-Harabasz index or Variance Ratio Criterion (Cal-
iński and Harabasz, 1974), which identifies the model with the most dense and well separated clusters.
This internal validationmetric is naive to the ground truth labels, and so keeps themodel selection process
unsupervised.

For theMean Shiftmodel, a rangeof bandwidthswith quantile parameters0.01, 0.02, . . . 0.15were searched.
The upper limit of 0.15 was selected because preliminary analyses showed models with quantiles > 0.15
predicted only two clusters. Pretending not to know the true number of species, a brief visual inspection of
the ammonoid data suggests at least three clusters exist, so it is reasonable to exclude models predicting
fewer clusters.
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Similarly, for the Affinity Propagation model the range of preference values −0.394,−0.344, . . . − 0.044
were searched. The lower limit of −0.394 and upper limit of −0.044 were selected becase preliminary
analyses showed models with preference < −0.394 predicted only one cluster, and models with positive
preference predicted 781 clusters. Again, visual inspection of the data finds these numbers of clusters to
be unrealistic, so it is reasonable to exclude such models.

Aftermodel selection, external validationwas performedonall unsupervisedmethods by computing Fowlkes-
Mallows scores (Fowlkes and Mallows, 1983), which compare the classes predicted by clustering to the
actual classes via the geometric mean of the pairwise precision and recall. Normalized Mutual Informa-
tion scores (Strehl and Ghosh, 2003) were also computed to compare these models with extant literature,
however this metric is not adjusted against chance.

All analyses were conducted in Python version 3.7.6 with the packages NumPy version 1.18.5, Matplotlib
version 3.2.2, pandas version 1.0.5, and scikit-learn version 0.23.1.

3 Results
The final analysis data are summarized in Table 3. While some species share similar values on average for
individual conch proportions, fewer have similar average values for all three conch proportions. Exceptions
include {Andidiscus behrendseni, Eoamaltheus multicostatus, and Badouxia canadensis}, and {Arkanites
relictus and Retites semiretia}. Standard deviations onmean conch proportions are generally small relative
to those proportions, suggesting relatively narrow spreads, which favour a classification approach.

Table 3: Final Analysis Data Summary.

Species N Average CWI (SD) AverageWWI (SD) Average UWI (SD)

Badouxia canadensis 148 0.30 (0.03) 0.89 (0.09) 0.41 (0.05)
Owenites koeneni 86 0.34 (0.07) 0.7 (0.1) 0.15 (0.07)
Cladiscites crassestriatus 76 0.45 (0.05) 0.8 (0.1) 0.00003 (0.00002)
Arkanites relictus 75 0.65 (0.07) 1.9 (0.3) 0.40 (0.06)
Retites semiretia 65 0.58 (0.04) 1.9 (0.3) 0.47 (0.05)
Karakaschiceras attenuatus 62 0.27 (0.03) 0.52 (0.08) 0.14 (0.03)
Cladiscites beyrichi 60 0.58 (0.05) 1.0 (0.1) 0.00003 (0.00001)
Meekoceras gracilitatis 56 0.23 (0.02) 0.46 (0.05) 0.16 (0.04)
Paralegoceras sundaicum 53 0.53 (0.07) 1.5 (0.3) 0.41 (0.09)
Andidiscus behrendseni 50 0.3 (0.1) 0.8 (0.3) 0.33 (0.06)
Eoamaltheus multicostatus 50 0.25 (0.03) 0.73 (0.07) 0.40 (0.02)

4

kennethdebaets
Highlight
It would be appropriate to make available your code so other researchers can reproduce your results. 

kennethdebaets
Highlight
Species need to be written in italics. 

Please provide stratigraphic resolution / geographic scope. For example, for Owenites koeneni your data seems to derive from different regions, stratigraphic levels, preservations and various authors which might compromise them being recognized as a single homogeneous population related with conch properties. So the different results for Owenites koeneni could potentially indicate distinct groups based on region/time/preservation beyond ontogeny you refer to in the discussion.  



The distribution of ammonoids in three-dimensional proportion space is shown in Figure 1. Intra-species
clustering is readily apparent formost species, especially Badouxia canadensis, Cladiscites beyrichi, Meeko-
ceras gracilitatis, and Karakaschiceras attenuatus, which display the least intra-cluster distance. Within-
population variability is considerably greater in the species Arkanites relictus, Paralegoceras sundaicum,
and Andidiscus behrendseni.

Figure 1: Within-Population Variability of Ammonoid Conch Proportions. Descriptive terms for proportion
ranges are sourced from Korn (2010).

Unbiased generalization performance estimates for the supervised models are shown in Table 4.

Table 4: Supervised Model Results.

Classifier Test Accuracy (SD) Train Accuracy (SD)

Support Vector Machine 0.781 (0.032) 0.844 (0.021)
Gradient Boosting 0.755 (0.039) 0.912 (0.045)
Random Forest 0.749 (0.045) 0.900 (0.067)
Naive Bayes 0.745 (0.034) 0.778 (0.011)
K-Nearest Neighbours 0.743 (0.040) 0.939 (0.074)
Decision Tree 0.704 (0.038) 0.940 (0.064)
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Finally, Table 5 contains the scores for the unsupervised models, whose corresponding clusterings are
shown in Figure 2.

Table 5: Unsupervised Model Results.

Method Predicted Number of Species (Clusters) Fowlkes-Mallows Score NMI Score

(Actual) 11 - -
Mean Shift 9 0.552 0.635
K-Means 5 0.545 0.626
DBSCAN 9 0.522 0.607
OPTICS 9 0.515 0.621
Affinity Propagation 15 0.503 0.614

Figure 2: Clustering of Ammonoid Conch Proportions from Supervised Machine Learning Methods. All
subplots have the same axes as Figure 1; The first subplot is identical to Figure 1. The colour maps between
subplots are independent.
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4 Discussion
This research aimed to taxonomize ammonoids by well-defined geometric conch parameters using ma-
chine learning algorithms. Supervised models obtained at least 70% accuracy in ammonoid classification.
Unsupervisedmodels obtained Fowlkes-Mallows scores of at least 0.5 and NormalizedMutual Information
scores of at least 0.6. The latter models predicted between five and 15 species when 11were present. This
proof-of-concept approach to ammonoid classification is novel in its application and may in future provide
additional insight for biostratigraphy, systematic palaeontology, and evolutionary biology. A discussion of
the models implemented follows.

4.1 Supervised Models
The supervised models’ average test accuracies ranged from 0.704 for the Decision Tree to 0.781 for the
Support Vector Machine. On this imbalanced dataset, a naive classifier approach which simply predicts
the majority class would achieve an accuracy of 148

781 ≈ 0.190. Relative to this baseline classifier, all the
models presented here are far superior. The relative performance of these models however is less clear.
The dispersions of the individual outer fold test accuracies as measured by the standard deviation on each
model were somewhat large relative to the differences in accuracies, therefore for this particular set of
models, the generalized test accuracies did not differ largely.

Another result to consider when evaluating whichmodel performed best is the average train accuracy. The
largest absolute differences between test and train accuracies were observed for the Decision Tree and
K-Nearest Neighbours classifiers. This suggests significant over-fitting in these models, which may lead to
poor out-of-sample performance. Compared to single tree models, tree ensemble methods generally have
less over-fitting (Shalev-Shwartz and Ben-David, 2014), and this is true of the Random Forest and Gradient
Boosting models presented in this study, however the reduction is not particularly large. Conversely, the
smallest differences between test and train accuracies were observed in the Naive Bayes and Support Vec-
torMachinemodels, with the downside to the latter approach being its highmemory intensiveness.

Based on the above considerations, the Naive Bayes and Support Vector Machine approaches appear to
be the most appropriate classifiers for ammonoid taxonomy.

The accuracies of the models demonstrated in this study are highly comparable to related studies using
other animal properties as features in supervised classifiers. For example, Gunasekaran and Revathy (2010)
classified animal species using acoustics with up to 70.3% overall accuracy, Manohar et al. (2016) classified
animal species using images with up to 79.54% overall accuracy, and Atanbori et al. (2016) classified birds
using motion with up to 66% accuracy.

4.2 Unsupervised Models
Overall, Fowlkes-Mallows andNMI scores were relatively low across all unsupervisedmethods. The highest
scores were achieved by the Mean Shift and K-Means algorithms respectively. In a datset consisting of 11
distinct species, the K-Meansmodel estimated five clusters (species) were present, whereas theMean Shift
algorithm predicted 9. Considering the number of clusters, Fowlkes-Mallows score, and NMI score, the
most successful unsupervised model applied to the ammonoid data was the Mean Shift algorithm.

While the DBSCAN and OPTICS algorithms also predicted 9 species, their scores were amongst the lowest,
and a visual inspection of the clusters makes it clear that both algorithms consistently overestimate the
range of conch proportions which define individual species (clusters). This can be seen in their subplots in
Figure 2, which are dominated in all areas of proportion space by single colours. In contrast, the distribution
of colours exhibited by the K-Means, Mean Shift, and Affinity Propagation algorithms resemble the actual
distribution much more closely.

Visually, Affinity Propagation had the most success in distinguishing between species such as Eoamaltheus
multicostatus and Badouxia canadensis, but was oversensitive to intraspecific variation in species such as
Owenites koeneni.

The results of this study suggest centroid-based supervised clustering algorithms such as K-Means and
Mean Shift are best suited to ammonoid taxonomy, while density-based approaches may be less appropri-
ate.
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The NMI scores achieved by these models are comparable to extant unsupervised classification literature
with similar objectives and number of classes, for example Clink and Klinck (2020) classified 10 primates
using acoustics with NMI scores between 0.55 and 0.73, and Saryan et al. (2020) achieved similar scores
when classifying 10 plant taxa.

4.3 Strengths
This study’s application of supervised and unsupervised methods in machine learning to ammonoid fos-
sils is novel, and the use of nested cross-validation and both internal and external validation metrics is
rigorous.

4.4 Limitations
The primary limitation of this study is the small sample size. This may result in overfitting if the algorithm
is too complex, or underfitting if the algorithm is too simple (Mehryar et al., 2018). Either way, a larger
number of ammonoid specimens for training would result in better generalization (Mehryar et al., 2018).
In this case, the sample size was limited by the availability of data in PBDB, therefore alternate data sources
are required for better generalization. Under similar circumstances of limited data availability, machine
learning approaches with fewer data have been published in recent months (Shen et al., 2020; Jiang et al.,
2020).

Furthermore, the data make no distinction between mature and juvenile specimens, nor males and fe-
males. However, the range of conch proportion values across ontogeny and sexual dimorphism may be
unique to individual species anyway, and therefore diagnostic of ammonoid taxonomy.
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