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A recommendation of
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Calcareous plankton gives us perhaps the most complete record of microevolutionary changes in the
fossil record (e.g. Tong et al., 2018;Weinkauf et al., 2019), but this opportunity is not exploited enough,
as it requires meticulous work in documenting assemblage-level variation through time. Especially in or-
ganisms such as coccolithophores, understanding themeaning of secular trends inmorphologywarrants
an understanding of the functional biology and ecology of these organisms. Razmjooei and Thibault

(2022) achieve this in their painstaking analysis of two coccolithophore lineages, Cribrosphaerella ehren-
bergii and Microrhabdulus, in the Late Cretaceous of Iran. They propose two episodes of morphological
change. The first one, starting around 76 Ma in the late Campanian, is marked by a sudden shift towards
larger sizes of C. ehrenbergii and the appearance of a new species M. zagrosensis from M. undulatus. The
second episode around 69Ma (Maastrichtian) is inferred from a gradual size increase andmorphological
changes leading to probably anagenetic speciation of M. sinuosus n.sp.

The study remarkably analyzed the entire distributions of coccolith length and rod width, rather than
focusing on summary statistics (De Baets et al., In Press). This is important, because the range of vari-
ation determines the taxon’s evolvability with respect to the considered trait (Love et al., 2022). As the
authors discuss, cell size in photosymbiotic unicellular organisms is not subject to the same constraints
that will be familiar to researchers working e.g. on mammals (Niklas, 1994; Payne et al., 2009; Smith

et al., 2016). Furthermore, temporal changes in size alone cannot be interpreted as evolutionary without
knowledge of phenotypic plasticity and environmental clines present in the basin (Aloisi, 2015). Themore
important is that this study cross-tests size changes with other morphological parameters to examine
whether their covariation supports inferred speciation events. The article addresses as well the effects
of varying sedimentation rates (Hohmann, 2021) by, somewhat implicitly, correcting for the stratophe-
netic trend using an age-depthmodel and accounting for a hiatus. Suchmultifaceted approach as applied
in this work is fundamental to unlock the dynamics of speciation offered by the microfossil record.
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A recommendation of Razmjooei and Thibault (2022)

The study highlights also the link between shifts in size and diversity. Klug et al. (2015) have pre-
viously demonstrated that these two variables are related, as higher diversity is more likely to lead to
extreme values of morphological traits, but this study suggests that the relationship is more intertwined:
environmentally-driven rise in morphological variability (and thus in size) can lead to diversification. It is
a fantastic illustration of the complexity of morphological evolution that, if it can be evaluated in terms
of mechanisms, provides an insight into the dynamics of speciation.
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Appendix

Reviews by Andrej Spiridonov and one anonymous reviewer, DOI: 10.24072/pci.paleo.100011.
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