FROST Stephen
- Dept. Anthropology, University of Oregon, Eugene, United States of America
- Morphological evolution, Morphometrics, Paleoanthropology, Paleoecology, Paleoenvironments, Taxonomy, Vertebrate paleontology
- recommender
Recommendation: 1
Reviews: 0
Recommendation: 1
Postcranial anatomy of the long bones of colobines (Mammalia, Primates) from the Plio-Pleistocene Omo Group deposits (Shungura Formation and Usno Formation, 1967-2018 field campaigns, Lower Omo Valley, Ethiopia)
Postcrania from the Shungura and Usno Formations (Lower Omo Valley, Ethiopia) provide new insights into evolution of colobine monkeys (Primates, Cercopithecidae)
Recommended by Stephen Frost based on reviews by Monya Anderson and 1 anonymous reviewerIn their analysis, Pallas and colleagues identify 32 postcranial elements from the Plio-Pleistocene collections of the Lower Omo Valley, Ethiopia as colobine (Pallas et al., 2024). This is a valuable contribution towards understanding colobine evolution, Plio-Pleistocene environments of the Turkana Basin, Kenya and Ethiopia, and how the many large-bodied catarrhines, including at least three hominins, four colobines, and three papionins, all with body masses over 30 Kg shared this ecosystem.
Today, colobine monkeys have greater diversity in Asia than in Africa, where they are represented by three small to medium-sized forms: olive, red, and black and white colobus (Grubb et al., 2003; Roos and Zinner, 2022). In the Pliocene and Pleistocene, however, they were significantly more diverse, with at least four additional large-bodied genera that varied considerably in body size, and as evidenced by multiple proxies, their preferred habitats, diets, and locomotor behaviors (Frost et al., 2022 and references therein). The highly fossiliferous sediments of the Shungura and Usno Formations in the Lower Omo Valley span the period from 3.75 to 1.0 Ma (Heinzelin, 1983; McDougall et al., 2012; Kidane et al., 2014) and have contributed greatly to understanding human and mammalian evolution during the African Plio-Pleistocene (Howell and Coppens, 1974; Boisserie et al., 2008), including the enigmatic large-bodied colobines (Leakey, 1982; 1987). Despite large samples of postcranial material from the Lower Omo Valley (Eck, 1977), most of our knowledge of fossil colobine postcrania is based on a relatively few associated skeletons from other eastern African sites (Birchette, 1982; Frost and Delson, 2002; Jablonski et al., 2008; Anderson, 2021). This is because the vast majority of postcrania from the Lower Omo Valley are not directly associated with taxonomically diagnostic elements.
Based on qualitative and quantitative comparison with an extensive database of extant cercopithecoid postcrania, Pallas et al. (2024) identify 32 long bones of the fore- and hindlimbs as colobine. These range in age from approximately 3.3 to 1.1 Ma. They made their identifications using a combination of body mass estimation and comparison with associated skeletons of Plio-Pleistocene and extant taxa. In this way, they tentatively allocate some of the larger material dated to 3.3. to 2.0 Ma to taxa previously recognized from craniodental remains, especially Rhinocolobus cf. turkanaensis and Paracolobus cf. mutiwa; and the smaller ca. 1.1 Ma to cf. Colobus. Interestingly, they also identify several specimens, especially from Members B and C, that are unlikely to represent taxa previously described for the Lower Omo Valley and make a possible link to Cercopithecoides meaveae, otherwise only known from the Afar Region, Ethiopia (Frost and Delson, 2002).
Based on these identifications, Pallas et al. (2024) hypothesize that Rhinocolobus may have been adapted to more suspensory postures compared to Cercopithecoides and Paracolobus which are estimated to have been more terrestrial. Additionally, they suggest that the possibly semi-terrestrial Paracolobus mutiwa may show adaptations for vertical climbing. These are novel observations, and if they are correct give further clues as to how these primates seemingly managed to co-exist in the same area for nearly a million years (Leakey, 1982; 1987; Jablonski et al., 2008). Better understanding the locomotor and positional behaviors of these taxa will also make them more useful in reconstructions of the paleoenvironments represented by the Shungura and Usno Formations.
References
Anderson, M. (2021). An assessment of the postcranial skeleton of the Paracolobus mutiwa (Primates: Colobinae) specimen KNM-WT 16827 from Lomekwi, West Turkana, Kenya. Journal of Human Evolution, 156, 103012. https://doi.org/10.1016/j.jhevol.2021.103012
Birchette, M. G. (1982). The postcranial skeleton of Paracolobus chemeroni [Unpublished PhD thesis]. Harvard University.
Boisserie, J.-R., Guy, F., Delagnes, A., Hlukso, L. J., Bibi, F., Beyene, Y., and Guillemot, C. (2008). New palaeoanthropological research in the Plio-Pleistocene Omo Group, Lower Omo Valley, SNNPR (Southern Nations, Nationalities and People Regions), Ethiopia. Comptes Rendus Palevol, 7(7), 429–439. https://doi.org/10.1016/j.crpv.2008.07.010
Eck, G. (1977). Diversity and frequency distribution of Omo Group Cercopithecoidea. Journal of Human Evolution, 6(1), 55–63. https://doi.org/10.1016/S0047-2484(77)80041-9
Frost, S. R., and Delson, E. (2002). Fossil Cercopithecidae from the Hadar Formation and surrounding areas of the Afar Depression, Ethiopia. Journal of Human Evolution, 43(5), 687–748. https://doi.org/10.1006/jhev.2002.0603
Frost, S. R., Gilbert, C. C., and Nakatsukasa, M. (2022). The colobine fossil record. In I. Matsuda, C. C. Grueter, and J. A. Teichroeb (Eds.), The Colobines: Natural History, Behaviour and Ecological Diversity. Cambridge University Press. Pp. 13–31. https://doi.org/10.1017/9781108347150
Grubb, P., Butynski, T. M., Oates, J. F., Bearder, S. K., Disotell, T. R., Groves, C. P., and Struhsaker, T. T. (2003). Assessment of the diversity of African primates. International Journal of Primatology, 24(6), 1301–1357. https://doi.org/10.1023/B:IJOP.0000005994.86792.b9
Heinzelin, J. de. (1983). The Omo Group. Archives of the International Omo Research Expedition. Volume 85. Annales du Musée Royal de l’Afrique Centrale, série 8, Sciences géologiques, Tervuren, 388 p.
Howell, F. C., and Coppens, Y. (1974). Inventory of remains of Hominidae from Pliocene/Pleistocene formations of the lower Omo basin, Ethiopia (1967–1972). American Journal of Physical Anthropology, 40(1), 1–16. https://doi.org/10.1002/ajpa.1330400102
Jablonski, N. G., Leakey, M. G., Ward, C. V., and Antón, M. (2008). Systematic paleontology of the large colobines. In N. G. Jablonski and M. G. Leakey (Eds.), Koobi Fora Research Project Volume 6: The Fossil Monkeys. California Academy of Sciences. Pp. 31–102.
Kidane, T., Brown, F. H., and Kidney, C. (2014). Magnetostratigraphy of the fossil-rich Shungura Formation, southwest Ethiopia. Journal of African Earth Sciences, 97, 207–223. https://doi.org/10.1016/j.jafrearsci.2014.05.005
Leakey, M. G. (1982). Extinct large colobines from the Plio‐Pleistocene of Africa. American Journal of Physical Anthropology, 58(2), 153–172. https://doi.org/10.1002/ajpa.1330580207
Leakey, M. G. (1987). Colobinae (Mammalia, Primates) from the Omo Valley, Ethiopia. In Y. Coppens and F. C. Howell (Eds.), Les faunes Plio-Pléistocènes de la Basse Vallée de l’Omo (Ethiopie). Tome 3, Cercopithecidae de la Formation de Shungura. CNRS, Paris, pp. 148-169.
McDougall, I., Brown, F. H., Vasconcelos, P. M., Cohen, B. E., Thiede, D. S., and Buchanan, M. J. (2012). New single crystal 40Ar/39Ar ages improve time scale for deposition of the Omo Group, Omo–Turkana Basin, East Africa. Journal of the Geological Society, 169(2), 213–226. https://doi.org/10.1144/0016-76492010-188
Pallas, L., Daver, G., Merceron, G., and Boisserie, J.-R. (2024). Postcranial anatomy of the long bones of colobines (Mammalia, Primates) from the Plio-Pleistocene Omo Group deposits (Shungura Formation and Usno Formation, 1967-2018 field campaigns, Lower Omo Valley, Ethiopia). PaleorXiv, bwegt, ver. 8, peer-reviewed by PCI Paleo. https://doi.org/10.31233/osf.io/bwegt
Roos, C., and Zinner, D. (2022). Molecular phylogeny and phylogeography of colobines. In I. Matsuda, C. C. Grueter, and J. A. Teichroeb (Eds.), The Colobines: Natural History, Behaviour and Ecological Diversity. Cambridge University Press. Pp. 32-43. https://doi.org/10.1017/9781108347150