HOUSSAYE Alexandra's profile
avatar

HOUSSAYE Alexandra

  • UMR 7179 MECADEV, CNRS/Museum National d'Histoire Naturelle, Paris, France
  • Biomechanics & Functional morphology, Comparative anatomy, Evolutionary biology, Fossil record, Histology, Methods, Morphological evolution, Morphometrics, Paleobiology, Paleoecology, Vertebrate paleontology
  • recommender

Recommendations:  2

Reviews:  0

Areas of expertise
- Since October 2014. Permanent Researcher. CNRS. UMR 7179, MNHN/CNRS, Paris. -- 2013/2014. Postdoc. UMR 7179, MNHN/CNRS, Paris (France). -- 2011/2013. Postdoc. Bonn Universität (Germany). -- 2010/2011. Postdoc. Harvard University/European Synchrotron Radiation Facilities (Grenoble, France). -- 2009/2010. ATER. Université de Nantes (France). -- 2009. PhD Thesis. MNHN, Paris, France.

Recommendations:  2

15 Dec 2022
article picture

Spatio-temporal diversity of dietary preferences and stress sensibilities of early and middle Miocene Rhinocerotidae from Eurasia: impact of climate changes

New insights into the palaeoecology of Miocene Eurasian rhinocerotids based on tooth analysis

Recommended by based on reviews by Antigone Uzunidis, Christophe Mallet and Matthew Mihlbachler

Rhinocerotoidea originated in the Lower Eocene and diversified well during the Cenozoic in Eurasia, North America and Africa. This taxon encompasses a great diversity of ecologies and body proportions and masses. Within this group, the family Rhinocerotidae, which is the only one with extant representatives, appeared in the Late Eocene (Prothero & Schoch, 1989). They were well diversified during the Early and Middle Miocene, whereas they began to decline in both diversity and geographical range after the Miocene, throughout the Pliocene and Pleistocene, in conjunction with the marked climatic changes (Cerdeño, 1998). 

In Eurasian Early and Middle Miocene fossil localities, a variety of species are often associated. Therefore, it may be quite difficult to estimate how these large herbivores cohabited and whether competition for food resources is reflected in a diversity of ecological niches. The ecologies of these large mammals are rather poorly known and the detailed study of their teeth could bring new elements of answer. Indeed, if teeth carry a strong phylogenetic signal in mammals, they are also of great interest for ecological studies, and they have the additional advantage of being often numerous in the fossil record. 

Hullot et al. (2022) analysed both dental microwear texture, as an indicator of dietary preferences, and enamel hypoplasia, to identify stress sensitivity, in a large number of rhinocerotid fossil teeth from nine Neogene (Early to Middle Miocene) localities in Europe and Pakistan. Their aim was to analyse whether fossil species diversity is associated with a diversity of ecologies, and to investigate possible ecological differences between regions and time periods in relation to climate change. Their results show clear differences in time and space between and within species, and suggest that more flexible species are less vulnerable to environmental stressors. 

Very few studies focus on the palaeocology of Miocene rhinos. This study is therefore a great contribution to the understanding of the evolution of this group.

 

References

Cerdeño, E. (1998). Diversity and evolutionary trends of the Family Rhinocerotidae (Perissodactyla). Palaeogeography, Palaeoclimatology, Palaeoecology, 141, 13–34. https://doi.org/10.1016/S0031-0182(98)00003-0

Hullot, M., Merceron, G., and Antoine, P.-O. (2022). Spatio-temporal diversity of dietary preferences and stress sensibilities of early and middle Miocene Rhinocerotidae from Eurasia: Impact of climate changes. BioRxiv, 490903, ver. 4 peer-reviewed by PCI Paleo. https://doi.org/10.1101/2022.05.06.490903

Prothero, D. R., and Schoch, R. M. (1989). The evolution of perissodactyls. New York: Oxford University Press.

22 Sep 2018
article picture

Palaeobiological inferences based on long bone epiphyseal and diaphyseal structure - the forelimb of xenarthrans (Mammalia)

Inferences on the lifestyle of fossil xenarthrans based on limb long bone inner structure

Recommended by based on reviews by Andrew Pitsillides and 1 anonymous reviewer

Bone inner structure bears a strong functional signal and can be used in paleontology to make inferences about the ecology of fossil forms. The increasing use of microtomography enables to analyze both cortical and trabecular features in three dimensions, and thus in long bones to investigate the diaphyseal and epiphyseal structures. Moreover, this can now be done through quantitative, and not only qualitative analyses. Studies focusing on the diaphyseal inner structure (cortical bone and sometimes also spongious bone) of long bones are rather numerous, but essentially based on 2D sections. It is only recently that analyses of the whole diaphyseal structure have been investigated. Studies on the trabecular architecture are much rarer.

Amson & Nyakatura (2018) propose a comparative quantitative analysis combining parameters of the epiphyseal trabecular architecture and of the diaphyseal structure, using phylogenetically informed discriminant analyses, and with the aim of inferring the lifestyle of extinct taxa. The group of interest is xenarthrans, one of the four major extant clades of placental mammals. Xenarthrans exhibit different lifestyles, from fully terrestrial to arboreal, and show various degrees of fossoriality. The authors analyzed forelimb long bones of some fossil sloths and made comparisons with several species of extant xenarthrans. The aim was notably to discuss the degree of arboreality and fossoriality of these fossil forms.

This study is among the first ones to conjointly analyze both diaphyseal and trabecular parameters to characterize lifestyles, and the first one outside of primates. No fossil form could undoubtedly be assigned to one lifestyle exhibited by extant xenarthrans, though some previous ecological hypotheses could be corroborated. This study also raised some technical challenges, linked to the sample and to the parameters studied, and thus constitutes a great step, from which to go further.

References

Amson, E., & Nyakatura, J. A. (2018). Palaeobiological inferences based on long bone epiphyseal and diaphyseal structure - the forelimb of xenarthrans (Mammalia). bioRxiv, 318121, ver. 5 peer-reviewed and recommended by PCI Paleo. doi: 10.1101/318121

avatar

HOUSSAYE Alexandra

  • UMR 7179 MECADEV, CNRS/Museum National d'Histoire Naturelle, Paris, France
  • Biomechanics & Functional morphology, Comparative anatomy, Evolutionary biology, Fossil record, Histology, Methods, Morphological evolution, Morphometrics, Paleobiology, Paleoecology, Vertebrate paleontology
  • recommender

Recommendations:  2

Reviews:  0

Areas of expertise
- Since October 2014. Permanent Researcher. CNRS. UMR 7179, MNHN/CNRS, Paris. -- 2013/2014. Postdoc. UMR 7179, MNHN/CNRS, Paris (France). -- 2011/2013. Postdoc. Bonn Universität (Germany). -- 2010/2011. Postdoc. Harvard University/European Synchrotron Radiation Facilities (Grenoble, France). -- 2009/2010. ATER. Université de Nantes (France). -- 2009. PhD Thesis. MNHN, Paris, France.